Datenhaufen zu IT und Elektronik.

Schlagwort: Elektrotechnik

Milchkühlschrank selber bauen?: Warum Reparieren sich lohnt !

Heute möchte ich euch eine kleine Geschichte zu meinem Milchkühlschrank erzählen. Ob das spannend wird? Na, da bin ich mir noch nicht so sicher.

In meiner Küche steht so ein Kaffeevollautomat – einfach wegen lecker Kaffee und so. Dieser ist, bei angeschlossener Milch, auch in der Lage, die gängigen Milchkaffeegetränke (nennt man das so?) auf Knopfdruck zuzubereiten. Also alles top. Nun trinke ich, vor allem wenn ich im Homeoffice sitze, schon mal einen Kaffee mehr. Da räume ich natürlich nicht für jeden Kaffee die Milch raus und wieder rein. Damit die Milch mehr als einen halben Tag überlebt, braucht sie etwas Kühlung. Genau an dieser Stelle kommt ein Milchkühlschrank ins Spiel.

In der Regel basieren solche kleinen Kühlschränke oder Kühlboxen auf einem einfachen thermoelektrischen Kühler namens Peltierelement. Ein solches Peltier-Modul funktioniert recht simpel. Meistens ist es ein kleines, flaches Quadrat mit zwei Leitungen. Schließt man die passende Stromversorgung an, wird eine der beiden Seiten warm und die andere kalt. Das Modul sorgt also dafür, dass es eine Temperaturdifferenz zwischen beiden Seiten gibt.

Sagen wir einfach mal, das Modul erzeugt immer eine Temperaturdifferenz von 30°C. Bei einer Raumtemperatur von 20°C wäre die eine Seite also bei 20°C und die andere bei -10°C. Gut, das ist nur die halbe Wahrheit, denn die heiße Seite wird im Betrieb wärmer, weil dort zwei Wärmequellen zusammenkommen:

Wärmeübertragung von der kalten Seite (Peltier-Effekt):
Der Peltier-Effekt transportiert Wärme von der kalten zur heißen Seite, wenn ein Strom durch das Modul fließt. Diese transportierte Wärme wird an der heißen Seite freigesetzt.

Joulesche Verlustwärme (Widerstandserwärmung):
Beim Fließen des elektrischen Stroms durch die Halbleiterelemente des Peltier-Moduls entsteht aufgrund des elektrischen Widerstands zusätzliche Wärme (Joule-Effekt). Diese Wärme erhöht ebenfalls die Temperatur der heißen Seite.

Kurz gesagt: Man muss die heiße Seite kühlen, damit die kalte Seite auch wirklich kalt wird. Diese wird allerdings nicht unendlich kalt, da wir nur einen Temperaturunterschied erzeugen können. Die Kühlung der heißen Seite ist also sehr wichtig. Dieses Wissen wird später noch hilfreich sein, also bitte kurz merken.

Zurück zum Milchkühlschrank. Wie funktioniert dieser nun? Um das besser erklären zu können, habe ich euch eine kleine Zeichnung angefertigt:

Schematische Darstellung, der Funktion eins Peltier Milchkühlers.

1 Schaumstoffdämmung, 2 Kühlkörper, 3 Befestigungsschrauben, 4 Peltier Modul, 5 Aluminiumblock

Die dicke schwarze Linie an der Innenseite der Schaumstoffdämmung stellt eine Metallplatte dar, die die Innenseite des Kühlschranks bildet. Diese ist mit etwas Wärmeleitpaste (für bessere Temperaturübertragung) mit dem Aluminiumblock verbunden. Im Aluminiumblock befinden sich Temperaturfühler, die dafür sorgen, dass das Peltier-Modul bei der gewünschten Temperatur abgeschaltet wird. Die kalte Seite des Moduls ist ebenfalls mit Wärmeleitpaste am Aluminiumblock befestigt, während die heiße Seite mit einem großen Kühlkörper verbunden ist. Dieser Kühlkörper vergrößert die Oberfläche der heißen Seite, sodass die Wärme besser an die Umgebungsluft abgegeben werden kann. Meist ist zusätzlich ein kleiner Lüfter verbaut, der aktiv Luft zuführt.

Mit diesem Wissen können wir nun alle selbst einen Milchkühlschrank oder eine kleine Kühlbox bauen. Ein oft verwendetes Peltier-Modul ist das TEC1-12706, das man im Doppelpack für ca. 10 € bekommt. Ein einfacher PC-Lüfter kostet etwa 10 €. Für rund 50 € kann man sich so ein Ding zusammenbauen.

Warum ist das wichtig? Nun, weil die Dinger für ca. 150 € verkauft werden. Was auch der Grund ist, warum ich mir nicht einfach einen gekauft habe. Denn, mal ehrlich: Wenn ich das für 50 € bauen kann, dann kostet es in der Massenproduktion in China noch weniger. Ja, ich weiß, ich kaufe ja nicht nur das Gerät, sondern auch die Bequemlichkeit – meine Milch bleibt länger frisch, und ich muss mich nicht kümmern. Aber so einfach ist das für mich nicht zu rechtfertigen. Es widerstrebt mir einfach.

Einen gebrauchten zu kaufen, schien mir da eine Option. Was soll ich sagen? Die Technik, die in solchen Geräten verbaut ist, ist oft billig und nicht auf Langlebigkeit ausgelegt. Von den Geräten, die ich bisher in der Hand hatte, hat keines länger als drei Jahre gehalten. Selbst gebraucht werden sie noch für rund 100 € angeboten. Das ist für mich einfach nicht verhältnismäßig.

Jetzt stand bei meinem Arbeitgeber plötzlich ein defekter Milchkühlschrank beim Elektroschrott. Das kam für mich überraschend. Natürlich habe ich nachgefragt, was mit dem Gerät los ist und ob es okay wäre, wenn ich es „entsorge“. Es war kein Problem, und so hatte ich einen neuen alten, kaputten Milchkühlschrank.

Und was hatte das Ding? Nichts Besonderes. Der Lüfter war gestorben, und die passive Kühlung reichte nicht aus, um das Innere des Kühlschranks ausreichend zu kühlen. Verbaut war ein einfacher 80×80 mm 12V PC-Lüfter. Den hatte ich noch in meiner Ersatzteilkiste. Also: Lüfter getauscht, und zack – schon funktionierte der Kühlschrank wieder. Zumindest bis zum Sommer.

Als die Temperaturen stiegen, wurde es im Kühlschrank nicht mehr richtig kühl, obwohl Lüfter und Peltierelement alles gaben. Ich habe das Gerät wieder aufgeschraubt, weil ich vermutete, dass die Wärmeleitpaste inzwischen hart und trocken war und ausgetauscht werden musste. Der Milchkühlschrank war inzwischen vier, knapp fünf Jahre alt – da kann das schon mal passieren.

War es die Wärmeleitpaste? Ja und nein. Die Paste war zwar trocken, aber das allein war nicht das Problem. Wenn ihr euch meine Zeichnung anschaut, sind euch vielleicht die Befestigungsschrauben (3) aufgefallen. Diese Schrauben sind aus Metall und verbinden den kalten Aluminiumblock direkt mit dem Kühlkörper – also eine klassische thermische Brücke. Das heißt: Ein Teil der Kälte wird direkt wieder in Wärme umgewandelt, weil Metall die Wärme gut leitet.

Das ist … naja, sagen wir mal suboptimal. Es funktioniert irgendwie, aber effizient ist das nicht. Ich habe die Löcher im Kühlkörper daher aufgebohrt und mit meinem 3D-Drucker Kunststoffbuchsen für die Schrauben hergestellt. Diese habe ich zusätzlich mit kleinen Federn versehen, die thermische Brücke ist so unterbrochen und die Felder drücken alles noch zusammen, selbst wenn sich das Aluminium durch die unterschiedlichen Temperaturen ausdehnt bzw. zusammen zieht. Danach war der Kühlschrank deutlich effizienter und verbrauchte spürbar weniger Energie. Warum der Hersteller das nicht von Anfang an so gemacht hat? Tja, irgendwie habe ich nur das Wort „Gewinnmaximierung“ im Kopf.

Das verbaute Netzteil war ebenfalls nur gerade so passend für die benötigte Leistung. Das ist okay, aber wenn ein Netzteil immer bei 90 bis 100 % Belastung arbeitet, gibt es irgendwann auf. Es funktionierte zwar noch, aber die Messwerte waren nicht optimal, und man konnte ihm die jahrelange Arbeit ansehen. Ich hatte noch ein HOUHUI-1206 im Regal – ein 12V 6A Gleichstromnetzteil, das ich irgendwann mal bei einem Gerät dabei hatte. Damals wollte ich es nicht einsetzen, weil es so billig aussah. Also lag es herum.

Hätte ich doch mal auf mein früheres Ich gehört! Denn sechs Monate später war der Kühlschrank wieder warm, und die LED am Netzteil war aus. Das Chinanetzteil hatte den Geist aufgegeben.

So langsam bröckelte der WAF (Woman Acceptance Factor). Ich sah mich schon einen neuen Milchkühler kaufen. Also habe ich das Netzteil aufgeschraubt und mal reingeschaut. Überraschung: Die Elektrolytkondensatoren (Elkos) waren aufgebläht – ein klassischer Fehler. Ich habe die Elkos getauscht, und schon funktionierte alles wieder.

Natürlich habe ich den Strombedarf des Kühlschranks gemessen, um sicherzugehen, dass das Netzteil nicht ständig an seiner Leistungsgrenze arbeitet. Ich bin nicht an die Grenze von 6A gekommen, aber trotzdem behalte ich das im Auge. Denn: 12V und 6A bedeuten 72 Watt. Wenn der kleine Milchkühlschrank 24/7 mit 70 Watt läuft, dann ist das auf Dauer auch zu teuer.

So viel also zu meiner Geschichte des Milchkühlschranks. Ob ich am Ende einen neuen kaufe? Vielleicht. Aber bis dahin läuft mein reparierter Milchkühlschrank wieder.

Fritz!Box 7590 und Spannungswandler: Fiepend stirbt das WLAN

Eigentlich sollte die Überschrift heißen: Ärgere ich mich gerade über mich selbst oder über AVM?

PCB der FritzBox 7590 mit Zoom auf den MP1477 Spannungsregler

Zuhause arbeitete eine FRITZ!Box 7590 KA, die zu Beginn mit einem Frixtender erweitert wurde. Nach knapp zwei Jahren habe ich bemerkt, dass die FRITZ!Box angefangen hat zu fiepen. Eine Funktionseinschränkung konnte ich jedoch nicht feststellen. Da es aber knapp vor dem Ablauf der Garantie war, habe ich Kontakt mit dem AVM-Support aufgenommen.

Dem AVM-Support habe ich in einer kurzen E-Mail geschildert, dass meine Box plötzlich fiept und ob ihnen in diesem Zusammenhang vielleicht Probleme, beispielsweise mit Spulen oder Spannungsreglern, bekannt sind. Die Antwort vom AVM-Support ließ nicht lange auf sich warten und lautete zusammengefasst: „Nein, uns sind keine Probleme bekannt, aber du kannst deine Box gerne zur Überprüfung/Austausch einschicken.“

Jetzt kommen wir zum Punkt, warum ich mich ärgere und unschlüssig bin, ob ich mich über mich selbst oder über AVM ärgere. Für meine Arbeit benötige ich eine funktionsfähige Internetverbindung. Wenn ich die Box einschicke, muss ich für eine Alternative sorgen. Wenn AVM die Box vorsorglich gegen eine neue tauscht, wäre das zwar schön, aber es gibt schon zu viel Elektroschrott. Elektronik darf Geräusche machen. Spulen könnt ihr euch oft wie eine Art Schwungrad vorstellen. Es braucht etwas, um anzulaufen, läuft dann aber auch noch einige Zeit weiter, selbst wenn es niemand mehr antreibt. Das hängt mit den aufkommenden Magnetfeldern zusammen und ist so gewollt. Magneten kennt ihr, und dass dort Kräfte an den Bauteilen ziehen, könnt ihr euch jetzt ebenfalls vorstellen. Eine Spule kann also mit der Zeit anfangen, leichte Geräusche zu machen, und das ist auch okay. Für Spannungsregler gilt das ebenfalls. Stellt euch einfach euren Wasserhahn vor: Wenn ihr ihn voll aufdreht, kommen da vielleicht 5 Liter in der Minute heraus. Wenn ihr weniger Wasser wollt, macht ihr den Hahn ganz schnell an und wieder aus. Wie schnell ihr das Wasser ein- bzw. ausschalten müsst, um beispielsweise nur 1 Liter pro Minute fließen zu lassen, messt ihr mit euren Augen. Ganz grob funktionieren Schaltnetzteile so. Je nach Last kann man da also schon mal etwas hören, und das ist okay.

So ist ein weiteres Jahr ins Land gegangen, bis mir in einem meiner Newsticker die Meldung über sterbende FRITZ!Boxen vom Typ 7590 aufgefallen ist. Hier wird von anfänglichem Fiepen, schlechter werdendem 2,4-GHz-WLAN bis hin zum Totalausfall des WLANs und der Box berichtet. Bääähhhhh. Das klang verdächtig nach dem von mir beobachteten Fehlerbild. Nun ist meine Box aus jeglicher Garantie und Gewährleistung heraus. Den AVM-Support brauche ich also nicht mehr zu bemühen, sondern kann mich vielmehr mit dem Gedanken anfreunden, eine neue Box zu kaufen, um auf einen Ausfall vorbereitet zu sein. Zeitgleich haben bei uns im Ort die Arbeiten am Glasfaserausbau begonnen. Diese gehen so schnell und gut voran, dass ich damit rechnen kann, bis zum Ende dieses Jahres von DSL auf Glasfaser wechseln zu können. Mit diesem Wechsel kommt vom Anbieter auch eine neue FRITZ!Box. Tjo… Also Risiko eingehen oder eine Box kaufen, die in 5 oder 6 Monaten dann wohl irgendwo im Regal Staub fängt?

Bevor es eine Antwort auf diese Frage gibt, noch schnell zum Punkt mit dem Ärgern: Ich habe AVM bewusst gefragt, ob es bekannte Probleme mit der Box gibt und speziell auf die aus meiner Sicht verdächtigen Bauteile hingewiesen. Die Antwort war ein klares Nein. Das muss ich jetzt einfach so glauben, aber ich werde den Beigeschmack nicht los, dass es zum Zeitpunkt meiner Supportanfrage schon einige Reklamationen wegen dieses Problems gegeben haben müsste. Daher wohl mein möglicher Ärger über AVM – und dass ich auf die Möglichkeit eines Austauschs verzichtet habe – und der Ärger über mich selbst.

Habe ich jetzt eine neue Box gekauft oder nicht? Nein, habe ich natürlich nicht. Ich habe meine Box von der Wand genommen, aufgeschraubt und durchgemessen. Ja, Geräusche und etwas zu hohe Spannung für das 2,4-GHz-WLAN habe ich gemessen bzw. zuordnen können. Alles aber noch im Rahmen, sodass ich gehofft habe, dass es noch ein paar Monate gutgeht. War leider nicht so. Vor ein paar Wochen ist die Box an der Wand „geplatzt“ und ich musste in den sauren Apfel beißen und eine neue für den Übergang kaufen. Jetzt habe ich wohl ein Backup für die Zukunft. Woohoo 🙁 Manchmal lerne ich nicht so schnell dazu, oder? Naja, manchmal kommt halt eins zum anderen.

Ob meine alte Box wirklich mit genau dem beschriebenen Problem ausgefallen ist, wollte ich dennoch herausfinden. Die Sichtprüfung war noch immer gut, aber es war keine Spannung mehr zu messen. Daher habe ich mir von Aliexpress ein paar MP1477 (die genaue Bezeichnung ist MP1477GTF-Z) zuschicken lassen. Ich habe direkt alle drei verbauten Chips ausgetauscht und siehe da, die Box lebt wieder. Oft sollen dabei wohl noch die RF FRONT ENDs 055F als Folge der zu hohen Spannung sterben, aber diese haben es bei mir zum Glück überlebt.

PCB der FritzBox 7590 mit Zoom auf den MP1477 Spannungsregler

Nun habe ich also auch noch ein Backup für das zukünftige Backup. Super…

Da ich bei Aliexpress insgesamt 10 Stück bestellt habe, liegen hier jetzt noch ein paar herum. Ich wäre bereit, sie gegen ein Snickers zu tauschen, falls jemand von euch vor einem ähnlichen Problem steht. Uhh, und bedenkt bitte, dass die Dinger ECHT klein sind. Ich habe euch mal einen auf ein 1-Cent-Stück gelegt. Ohne Heißluftstation und etwas SMD-Löterfahrung solltet ihr das vielleicht lieber nicht angehen.

Größenvergleich zwischen dem MP1477 Spannungsregler und einem Euro-Cent-Stück

Die Messpunkte und die erwarteten Spannungen findet ihr im folgenden Bildchen.

PCB der FritzBox 7590 mit eingezeichneten Messpunkten und Messwerten des MP1477 Spannungsreglers

Wenn ihr dann noch Fragen habt, fragt einfach 🙂

RIDEN RD6006: Reparatur der defekten Schottky-Diode S10C100D

Vor einigen Monaten habe ich ein neues Labornetzteil aus China gekauft. AliExpress Labornetzteil – RIDEN RD6006 DC POWER SUPPLY

Defekte S10C100D-02 Schottky Diode

Bisher arbeitet dieses Gerät vor sich hin und hat auch bereits einige kWh abgeleistet. Als Fazit… Das Netzteil tut seinen Job, die grüne Schraubklemme verwechselt man schnell mit PE, ist aber zum Laden von Akkus und am Oszilloskop kann man sehr gut einiges „switching noise“ erkennen. Wenn man sich dessen bewusst ist, gibt es kaum etwas, was man gegen dieses Netzteil sagen kann. Preis / Leistung ist einfach unschlagbar!

Selbst die Ladefunktion für Akkus funktioniert tadellos, wenn auch manuell. Das Netzteil erkennt nicht selbstständig den Akku, sondern man muss dem Netzteil sagen, was es tun muss.

In der Zwischenzeit habe ich es ebenfalls etwas „missbraucht“, um ein paar alte Blei gel Akkus wieder zu beleben. Dabei hat sich leider ein kleines Problemchen ergeben…. Mir ist eine Schottky-Diode geplatzt, genauer die S10C110D vom RIDEN RD6006. Diese ist auf dem Board mit D12 gekennzeichnet. Wenn man in die >>Specs<< dieser Diode schaut, sieht es so aus, als wenn sie eine Art Verpolungsschutz beim Akkulader ist. Nun ist mir nicht bewusst aufgefallen, dass ich hier etwas verpolt habe. Die kaputte Diode (vor allem mit den Leistungsdaten) sagen dazu etwas anders 😀

Nun wollte ich schnell Ersatz bestellen, leider konnte ich nichts Passendes finden. Klar ich hätte hier und da etwas kombinieren können, nur wollte ich dieses nicht.

Hangzhou Ruideng Technology Co., Ltd. bietet zur Kontaktaufnahme WeChat (15868147353) an. Wie ich lernen durfte, ist es nicht ganz trivial, als nicht Festlandchinese WeChat zu nutzen. Ich meine inzwischen zusätzliche Kontaktmöglichkeiten gefunden zu haben. Durch die Unterstützung eines Bekannten (DANKE JOST), lief es irgendwann und ich konnte das Unternehmen RD Tech in China darüber erreichen.

Der Support dabei war extrem gut. Schnell, super freundlich, sehr hilfsbereit und kompetent.

Zusammen mit dem Support konnten wir das komplette Labornetzteil durch testen und sicherstellen, dass wirklich nur diese eine Diode def. ist. Absoluter Service von RD Tech, eigentlich wollte ich nur nach dem Ersatzteil fragen. Dieses habe ich am Ende ebenfalls bekommen, sogar direkt 5 Stück davon und noch zwei Sicherungen als Reserve (da hat wohl jemand den Verdacht, ich könnte noch mehr kaputt machen). Zahlen musste ich nur 3€ für den Versand.

Der Versand von China zu mir hat natürlich ein paar Tage gedauert, heute ich alles angekommen.

Inzwischen verbaut und das Netzteil ist wieder voll funktionsfähig!

Ich möchte hier noch einmal ganz besonders den Support von RD Tech hervorheben. Englisch war überhaupt kein Problem (was mir vorher etwas Sorgen bereitete), es hat sich wirklich jemand knapp 2 Stunden Zeit genommen um mir bei meinem Problem zu helfen und derjenige war wirklich daran interessiert, mein Problem zu lösen. Alles für 0€. Ich habe kostenlos viel mehr Ersatzteile bekommen, als ich eigentlich haben wollte. Ich musste, wie schon erwähnt, nur den Versand bezahlen. Wenn ich dann also noch mal etwas Werbung machen darf: YouTube link

Bose QuietComfort 35: Akku tauschen leicht gemacht

Der Akku in meinem Bose QC35 hat inzwischen ausgedient und muss ausgetauscht werden. Der verbaute Akku ist ein AHB110520CPS von Synergy. Leider konnte ich diesen nicht als Ersatzakku finden. Man kann ihn zwar aus China bestellen (ca. 35 €), aber er ist dann gebraucht, da er aus einem alten Kopfhörer ausgebaut wurde – natürlich „getestet“.

Alternativ gibt es die Möglichkeit, den Kopfhörer einzuschicken und den Akku dort tauschen zu lassen (ca. 70 €). Beides sind jedoch Lösungen, die mir nicht zusagen, denn im Grunde handelt es sich nur um einen einfachen 3,7V-Akku mit knapp 500 mAh.

Nach einiger Suche habe ich jedoch einen passenden Ersatz gefunden. Der Akku GSP072035 hat zwar etwas weniger mAh, was bedeutet, dass die Kopfhörer etwas früher leer sind – aber damit kann ich leben. Zumal die Standzeit des alten Akkus ohnehin schon stark eingeschränkt war. Bestellt habe den folgenden Ersatzakku bei Amazon: https://amzn.to/2JXwhJc

Der neue Akku passt zwar nicht exakt ins Akkufach des alten, ist jedoch klein genug, um problemlos im Kopfhörer Platz zu finden, ohne das Gewicht oder die Klangqualität zu beeinflussen. Man merkt den Unterschied also nicht!

Ein kleiner Tipp: Wenn man schon dabei ist, kann man auch gleich die Ohrpolster austauschen. Ich habe die folgenden Polster bereits zweimal erneuert und kann sie wärmstens empfehlen: https://amzn.to/2L4xcbo

Wie man den Akku selbst austauscht, zeigt eine erstklassige Anleitung von IFIXIT: https://de.ifixit.com/Anleitung/Bose+QuietComfort+35+Akku+tauschen/134337

Bild vom geöffnetem Bose QuietComfort 35 mit eingebautem Ersatzakku.

Sobald der alte Akku entfernt ist, klebt man den neuen mit einem kleinen Tropfen Heißkleber in die Ecke und lötet ihn wie den alten Akku an. Nach dem Zusammenbau sollte der Kopfhörer wieder wie gewohnt funktionieren – abgesehen von etwa 20–25 Minuten weniger Hörzeit.

Kleines Update! 😊

Inzwischen gibt es auf Amazon einen perfekt passenden Ersatzakku. Es war mal wieder Zeit für einen Austausch, und dieses Mal habe ich sogar ein Modell mit 600 mAh gefunden. Jetzt habe ich so viel Hörzeit wie noch nie zuvor mit meinen Kopfhörern! 🎧 https://amzn.to/3CsPQnv

Fragen? Dann fragt einfach! 🙂

Luftqualität messen: Feinstaub und mehr mit DIY-Sensoren

Bild vom DIY Feinstaubsen und Luftqualitätsensor beim Aufbau.

Es gibt ein ganz spannendes Projekt, welches sich mit dem Messen und Sammeln von Umweltdaten beschäftigt. So gibt es vom Projekt einige Bauanleitungen inkl. Software zum Messen der Luftqualität, Temperatur, Luftfeuchtigkeit, Lärm usw… Die Webseite findet ihr hier: https://luftdaten.info/

Im einfachsten Fall basiert so ein Sensor am Ende auf folgenden Komponenten:
NodeMCU ESP8266, CPU/WLAN
SDS011 Feinstaubsensor (früher PPD42NS)
DHT22, Temperatur & Luftfeuchtigkeit (optional)

Die Daten werden offen gesammelt und können auf verschiedene Weise eingesehen werden. So gibt es zum Beispiel:
– eine Karte:  https://maps.sensor.community
– Grafana: Temperatur / Feinstaub

Die Bauanleitung ist extrem einfach, die Teile bekommt jeder und kosten kaum Geld. Selbst der Softwareteil ist ohne jeden Aufwand. Man muss nicht mal löten! Fast jeder sollte in der Lage sein so einen Sensor zu bauen und ihn mit seinem WLAN zu verbinden. Vielleicht ein schönes Projekt mit seinen Kindern oder um sich im Unterricht mit so etwas zu beschäftigen?!?

Fragen? Dann fragen!

Riden RD6006: Günstiges Labornetzteil von AliExpress im Test

RIDEN RD6006 DC POWER SUPPLY Labornetzteil

Vor knapp 20 Jahren habe ich mir ein Labornetzteil gebaut. Elektronik lernen und verstehen war dabei das Ziel. Das Netzteil liefert mir 30V und 3A ist kurzschlusssicher und hält Strom und Spannung auch unter Last sauber. Es ist komplett analog mit zwei dreistelligen Segmentanzeigen für Strom und Spannung.
Insg. ein sehr schönes Gerät welches mich schon viele Jahre begleitet. Dennoch stößt es immer wieder an seine Grenzen. Ich möchte mehr als 30V oder benötige mehr als 3A. Zum einfachen Messen muss ich weitere Geräte einschleifen, ebenfalls wenn ich Strom/Spannung sehr fein einstellen möchte geht es nicht ohne weiteres Messgerät und etwas Fingerspitzengefühl.
Verlaufskurven digital speichern, vorgespeicherte Werte schnell abrufen und ausgeben oder einfach zwischen verschiedenen Werten schnell wechseln…. Alles Dinge an welche man bei dem Gerät nicht denken muss. Ebenfalls ist es kein modernes Schaltnetzteil, sondern basiert noch „ganz Oldschool“ auf einem großen Trafo. Erst dahinter mache ich Strom und Spannung „sauber“ zu den damit verbundenen Nachteilen kommt die hohe Verlustleistung in Wärme.
Ein neues Labornetzteil was mir diese Möglichkeiten eröffnet muss her. Dabei benötige ich kein Highendgerät. Dafür sind meine Anwendungen zu simpel. Preis/Leistung muss halt passen. Ich bin daher auf das RIDEN RD6006 gestoßen. Ein Gerät von AliExpress aus China… Puhhh… Naja, im Grunde kommt ja inzwischen fast alles aus China. Nur kommt ebenfalls viel Schrott von dort. Die Eckdaten des Netzteils sind so gut, dass ich es probieren wollte.

Nach knapp 3 Wochen waren alle Teile bei mir und ich konnte beginnen es zusammen zu bauen. Das Handbuch gibt es als PDF in Chinesisch und Englisch, in diesem ist das nötigste beschrieben. Ich kann Akkus damit Laden, bekomme bei 60V noch 6A heraus, es lässt sich per USB mit dem PC verbinden, es gibt Software dafür, Firmwareupdates ebenfalls und und und…

Gut, das WLAN Modul funktioniert irgendwie nicht oder öhm nicht so wie ich es erwarten würde. Der Temperatursensor zur Überwachung der Akkutemperatur beim Laden muss „irgendwie“ aus dem Gehäuse gelegt werden und ich habe mich dann die Schutzerde doch zusätzlich noch ans Gehäuse geklemmt.

Davon abgesehen ist das Ding echt gut. Ja es tut was es soll und steigert meine Möglichkeiten.

Hier der Link zum „Nachkaufen“:  https://s.click.aliexpress.com/e/_DBNqtJT

OBI LED-Produkt im Test: Was habe ich da gekauft?

Vor knapp zwei Jahren habe ich für meine Werkstatt ein paar neue Deckenleuchten benötigt. Bisher waren zwei Neonröhren meine Lichtquelle. Lichtfarbe und Stärke passten einfach nicht mehr. Im OBI habe ich zu diesem Zeitpunkt zufällig LED Leuchten gesehen, welche in Form und Länge an klassische Neonröhren erinnern. Der Preis lag irgendwo zwischen 10 bis 20 €, also kein Preis bei dem man viel falsch machen kann, oder?

OBI LED SCHROTT Typ LY-5024-2 von Ritter Leuchten GmbH

Naja, vielleicht ja doch!??! Jetzt nach zwei Jahren beginnen ein paar der LED Leuchten zu flackern. Also schnell eine der Leuchten von der Decke geschraubt um sie zu zerlegen. Vielleicht findet sich ja das Problem?!?

Die Schaltung ist sehr überschaubar. Zuerst eine kleine Sicherung, dann ein Brückengleichrichter, ein kleiner Kondensator zur Spannungsglättung (ich habe wohl zwei Versionen der Leuchten, mit und ohne diesen Kondensator), ein kleiner hochohmiger Widerstand (zur schnellen Entladung vom Kondensator beim „Licht aus“) und noch zwei „Einchip“ LED Treiber mit seinen Steuerwiderständen. Oh und natürlich die einzelnen LEDs!

Der Brückengleichrichter ist ein MB6s, welcher laut den Specs „passen“ sollte. Der 400v 10uF Kondensator zur Spannungsglättung passt ebenfalls für mich, auch der 1M Ω Endladewiderstand passt schon. AAAABBBEERRR die beiden LED Treiber SM2082D sehen schon etwas spannend aus, so als wenn die „warm“ werden. Laut specs geben sie bei 10V bis zu 60mA raus. Der Rest wird also in „Wärme“ verwandelt. Was man an den Operating temperature von -40 ~ 125°C bewundern kann.

Bei den Leuchten mit Kondensator pendelt sich die Temperatur bei etwas zwischen 70 und 75°C ein. Bei den Leuchten ohne Kondensator werden es auch mal 90°C. Da hat der kleine LED Treiber wohl ganz schön was zu regeln, wohl der Grund warum in Version 2 ein Kondensator vorgesehen ist 😉

Gut der Hersteller hat versucht mit etwas Wärmeleitpaste auf der Rückseite des LED Streifens die Temperatur ans Alugehäuse abzugeben. Die Menge und Verteilung der Wärmeleitpaste ist aber sehr sehr dürftig. Nach etwas Einsatzzeit nimmt die Leistung der Paste natürlich ab und irgendwann ist es halt zu schlecht oder besser gesagt, die LED Treiber werden zu heiß und verbrennen ihre eigenen Lötkontakte bis zum Haarriss. Dann flackert es… Ich habe daher die Kontakte nachgelötet (kein Flackern mehr) und mit Wärmeleitkleber einen kleinen Kühlkörper auf die Treiber geklebt. Damit hält sich die Temperatur bei knapp 50°C. Das sollte die Lebenszeit deutlich erweitern. Passende Kondensatoren liegen hier ebenfalls noch und sind verbaut. Mal sehen wie lange sie nun nicht flackern!

Zusätzlich habe ich das Alugehäuse noch mit der Schutzerde verbunden. Die simple Lackisolierung vom LED Streifen bei den Temperaturen hat mich nicht ganz überzeugt 😉

Ich würde sagen, dass hat jemand auf Verschleiß gebaut. Die Leuchten sollen wohl kurz nach der Garantie ausfallen. So zumindest mein Eindruck…. Bei dem Preis, naja…

Natürlich hätte ich damit rechnen können. Ich meine Leuchten kaufen, im OBI und dann für etwas bis 20€. Was können die schon in der Herstellung gekostet haben?

Typ LY-5024-2 von Ritter Leuchten GmbH www.ritos.de

Softstart-Modul: Sanftanlauf für 230-Volt-Geräte

Um da ein paar Rückfragen zu folgendem Beitrage zu beantworten: Sanftanlauf für Elektromotor / Softstart / Anlaufstrombegrenzer

Bei meinem Eigenbau ging es nur darum, herauszufinden wie ich es mit vorhandenen Teilen bauen kann. Es gibt für gut bezahlbares Geld fertige Module. Dieses hier nutze ich selbst an der Kapp- und Gehrungssäge bei 230V und bis 2500Watt.

>>Amazonlink klick<<

Funktioniert so wie man es sich vorstellt.

Multifunktionstester für Elektronikbauteile: Einfache Diagnose leicht gemacht

Aus alter/defekter Elektronik grabble ich mir gerne ein paar Bauteile heraus. Dieses hat bei mir in den 90er angefangen, weil eine Bestellung bei Conrad mein damaliges Taschengeld zu hart angegriffen hat. Amazon gab es so noch nicht, Lieferzeiten von einer Woche waren selbstverständlich und oft waren die Portokosten höher als der Preis für das gewünschte Bauteil selbst. Das waren die Zeiten von gut geplanten Sammelbestellungen des Freundeskreises bei Conrad.

Daher habe ich, wie viele andere ebenfalls, angefangen aus defekten Geräten einfach die brauchbaren Teile auszubauen. Hier ein Elko, da ein paar Widerstände, mal einen Transistor oder Dioden usw. usw… Irgendwie bin ich diese Angewohnheit nicht mehr los geworden. Meist interessiert mich aus welchem Grund ein Gerät aufgegeben hat, mal einfach nur wie es der Hersteller realisiert hat. Auf dem Weg baue ich dann aus was ich „möglicherweise“ mal brauchen kann. Hier liegen jetzt noch in Kisten Bauteile, welche ich vor 20 Jahren ausgebaut habe. Einige Dinge werden sicher nie mehr genutzt! Viele Projekte sind dennoch aus genau diesen Teilen entstanden.

Nicht selten fehlt mir dann bei einem angedachten Projekt doch ein Bauteil und ich muss mir überlegen wie ich es mit den vorhandenen umgesetzt bekomme. Was immer wieder spannend und herausfordernd sein kann!

Ein großes Problem mit den Bauteilen ist immer wieder, die Gewissheit ob jetzt die Schaltung einen Fehler hat oder doch nur das Bauteil def. ist. Ich habe dafür nun ein kleines Gerät, welches schnell und einfach einzelne Bauteile durchmessen kann. Der kleine Multifunktionstester erkennt dabei automatisch das Bauteil und prüft dieses. Ebenfalls gibt es auf einem kleinen Display aus welches Bauteil es erkannt hat und welche Daten er dazu hat. Dabei kostet das Ding unter 20€ und ist in verschiedenen Versionen erhältlich. Als einfache Platine, mit Gehäuse oder als Bausatz.

Natürlich ist es nicht 100% zuverlässig und die Lösung aller Probleme! Ich kann es aber mit sehr gutem Gewissen weiterempfehlen. Oh ja, der Amazon link!

Temperaturmessung mit dem Raspberry Pi und DHT22-Sensor

Meine Wetterstation hat aufgegeben 🙁 OK, wirklich interessant war für mich immer nur Luftfeuchtigkeit und Temperatur draußen. Diese Aufgabe sollte doch von meinem Raspberry Pi erfüllt werden können, oder? Dann hätte ich die Daten zusätzlich direkt in meinem Cacti!

Ich setzte dabei auf den DHT22 / AM2302. Über Amazon war dieser für 2€ schnell bestellt. Ein 4,7kΩ Widerstand hatte ich selbstverständlich noch. Das eigentliche Schaltbild ist nicht weiter der Rede wert, ich habe da ein Bild für euch weiter unten…

Zur Software…

Nötig ist git für wiringPi und lol_dht22

Erstmal eine root Konsole auf dem Raspberry Pi öffnen:

$ sudo /bin/bash

Alle Tools für git installieren:

$ apt-get install git-core

Dann einen clone von wiringPi ziehen und kompilieren:

$ git clone git://git.drogon.net/wiringPi
$ cd wiringPi
$ ./build
$ cd ..

Jetzt noch schnell lol_dht22, dieses Programm liest den eigentlichen Sensor aus.

$ git clone https://github.com/technion/lol_dht22
$ cd lol_dht22
$ ./configure
$ make

Damit sollte sich bereits der Sensor auslesen lassen:

$ ./loldht 7
Raspberry Pi wiringPi DHT22 reader
www.lolware.net
Data not good, skip
Humidity = 73.90 % Temperature = 9.30 *C

Perfekt 😀 Nun benötige ich natürlich nur die beiden Zahlen. Daher habe ich den Code etwas angepasst. So bekomme ich jetzt nur noch die beiden Werte beim Aufruf:

$ /lol_dht22/loldht 7
73.90
9.30

Diese sammle ich nun per Bash-Script über einen Cron-Job ein und lege sie in zwei Files.

$ crontab -l
* * * * * /var/scripts/getsensor.sh

Hier das vom Cron aufgerufene Script:

$ cat /var/scripts/getsensor.sh
#!/bin/bash

/lol_dht22/loldht 7 > /home/pi/both.txt

 
while [ ! -s "/home/pi/both.txt" ]
do
        sleep 5
        /lol_dht22/loldht 7  > /home/pi/both.txt
 
done

sed '2d' /home/pi/both.txt > /home/pi/humid.txt
sed '1d' /home/pi/both.txt > /home/pi/temp.txt

Damit liegen nun immer die aktuellen Werte für Temperatur und Luftfeuchtigkeit in den beiden Textfiles unter /home/pi.

Jetzt sollen diesen Daten natürlich noch per snmp abgerufen werden können, damit ich sie in Cacti einbinden kann. Also zuerst snmp auf dem Raspberry Pi installieren:

$ apt-get install snmp snmpd

Unter „Pass-through“ MIB extension command lege ich nun zwei weitere an, für Temperatur und Luftfeuchtigkeit:

pass .1.3.6.1.2.1.25.1.8.2      /bin/sh         /usr/local/bin/temp
pass .1.3.6.1.2.1.25.1.8.1      /bin/sh         /usr/local/bin/humid

Wird nun per snmp diese OID abgefragt, wird das zugehörige Script ausgeführt:

$ cat /usr/local/bin/temp
#!/bin/bash
echo .1.3.6.1.2.1.25.1.8.2
echo gauge
cat /home/pi/temp.txt
$ cat /usr/local/bin/humid
#!/bin/bash
echo .1.3.6.1.2.1.25.1.8.1
echo gauge
cat /home/pi/humid.txt

Als kleiner Test:

$ snmpget -c public -v1 errorpi .1.3.6.1.2.1.25.1.8.1
iso.3.6.1.2.1.25.1.8.1 = Gauge32: 76

$ snmpget -c public -v1 errorpi .1.3.6.1.2.1.25.1.8.2
iso.3.6.1.2.1.25.1.8.2 = Gauge32: 9

Dieses lässt sich nun im Cacti einbinden und so aufzeichnen. Ok, etwas von hinten durch die Brust ins Auge… Sicher optimiere ich dieses noch 😀

Ach ja,  wer es braucht… Die Template-Exports für Cacti sind hier: cacti-temp.tar.gz


Und wohin mit dem Teil? Diese Frage hat mich etwas beschäftigt. Ich wollte es draußen haben, denn ich brauche ja die Daten von draußen 😀 Dafür muss es geschützt vor Wasser sein. Um die Luftfeuchtigkeit messen zu können darf es denn noch nicht komplett verschlossen sein. Ebenfalls sollte es an einer Stelle hängen, an welcher es nicht zu schlecht aussieht und vor allem, an welcher es nicht zerstört wird.

Ich habe einfach ein Rohr genommen, den Sensor dort mit etwas Silikon „eingeklebt“ und das Rohr an einer Seite mit einem Deckel verschlossen. So sollte kein Wasser an den Sensor laufen können. Angebracht habe ich dieses Rohr an meinem Pfosten der Satellitenschüssel. Dort oben „steht“ die Luft eher selten und es kommt niemand ran. Zusätzlich fällt es dort nicht weiter auf.

Mal abwarten wie es sich dort oben macht. Vielleicht hänge ich es später noch mal um! Sobald sich die eigentliche Position gefestigt hat, wird dann auch der Raspberry PI ordentlich verstaut ;-P


© 2025 -=Kernel-Error=-

Theme von Anders NorénHoch ↑